A ceramide-activated protein phosphatase mediates ceramide-induced G1 arrest of Saccharomyces cerevisiae.
نویسندگان
چکیده
Certain mammalian growth modulators, such as tumor necrosis factor alpha, interleukin-1beta, and gamma-interferon, induce an antiproliferative response-terminal differentiation, apoptosis, or cell cycle arrest-through a novel signal transduction pathway mediated by the lipid ceramide as a second messenger. Both a ceramide-activated protein phosphatase and a ceramide-activated protein kinase have been implicated in transmitting the signals elicited by ceramide. We have determined that ceramide addition to the yeast Saccharomyces causes a similar antiproliferative response, resulting in arrest of cells in the G1 phase of the cell cycle. We have also determined that yeast cells contain a ceramide-activated protein phosphatase composed of regulatory subunits encoded by TPD3 and CDC55 and a catalytic subunit encoded by SIT4. Because mutation of any one of these three genes renders strains resistant to ceramide inhibition, we conclude that the G1 effects of ceramide are mediated at least in part by the yeast ceramide-activated protein phosphatase. These results highlight the conservation of signaling systems in yeast and mammalian cells and provide a novel approach to dissecting this ubiquitous signal transduction pathway.
منابع مشابه
Loss of cyclin A and G1-cell cycle arrest are a prerequisite of ceramide-induced toxicity in human arterial endothelial cells.
BACKGROUND Ceramide is an important messenger of TNF- and lipid-induced apoptosis. We previously demonstrated the adverse effect of TNF in the process of reendothelialization as well as the dependence of its effect on cell-cycle regulation. The current study was designed to investigate the linkage between ceramide induced toxicity and growth arrest in human endothelial cells. METHODS AND RESU...
متن کاملSignal transduction of stress via ceramide.
The sphingomyelin (SM) pathway is a ubiquitous, evolutionarily conserved signalling system analogous to conventional systems such as the cAMP and phosphoinositide pathways. Ceramide, which serves as second messenger in this pathway, is generated from SM by the action of a neutral or acidic SMase, or by de novo synthesis co-ordinated through the enzyme ceramide synthase. A number of direct targe...
متن کاملInositol phosphoceramide synthase is a regulator of intracellular levels of diacylglycerol and ceramide during the G1 to S transition in Saccharomyces cerevisiae.
We recently reported that DAG (diacylglycerol) generated during sphingomyelin synthesis plays an important role in protein kinase C activation and cell proliferation in Madin-Darby canine kidney cells [Cerbon and Lopez-Sanchez (2003) Biochem. J. 373, 917-924]. In yeast cells, IPC (inositol phosphoceramide) synthase catalyses the transfer of phosphoinositol from phosphatidylinositol to ceramide ...
متن کاملLcb4p is a key regulator of ceramide synthesis from exogenous long chain sphingoid base in Saccharomyces cerevisiae.
Long chain sphingoid bases (LCBs) and their phosphates (LCBPs) are not only important intermediates in ceramide biosynthesis but also signaling molecules in the yeast, Saccharomyces cerevisiae. Their cellular levels, which control multiple cellular events in response to external and intrinsic signals, are tightly regulated by coordinated action of metabolic enzymes such as LCB kinase and LCBP p...
متن کاملSphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response.
The sphingolipid metabolites ceramide and sphingosine-1-phosphate are second messengers with opposing roles in mammalian cell growth arrest and survival; their relative cellular level has been proposed to be a rheostat that determines the fate of cells. This report demonstrates that this rheostat is an evolutionarily conserved stress-regulatory mechanism that influences growth and survival of y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 10 4 شماره
صفحات -
تاریخ انتشار 1996